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Abstract. In a p-spin interaction spherical spin-glass model both the spins and the couplings are allowed
to change with time. The spins are coupled to a heat bath with temperature T , while the coupling con-
stants are coupled to a bath having temperature TJ . In an adiabatic limit (where relaxation time of the
couplings is much larger that of the spins) we construct a generalized two-temperature thermodynamics.
It involves entropies of the spins and the coupling constants. The application for spin-glass systems leads
to a standard replica theory with a non-vanishing number of replicas, n = T/TJ . For p > 2 there occur
at low temperatures two different glassy phases, depending on the value of n. The obtained first-order
transitions have positive latent heat, and positive discontinuity of the total entropy. This is an essentially
non-equilibrium effect. The dynamical phase transition exists only for n < 1. For p = 2 correlation of
the disorder (leading to a non-zero n) removes the known marginal stability of the spin glass phase. If
the observation time is very large there occurs no finite-temperature spin glass phase. In this case there
are analogies with the non-equilibrium (aging) dynamics. A generalized fluctuation-dissipation relation is
derived.

PACS. 64.70.Pf Glass transitions – 05.70.Ln Nonequilibrium and irreversible thermodynamics – 75.10.Nr
Spin-glass and other random models

1 Introduction

The spin-glass model proposed by Edwards and
Anderson [1,2] is a paradigm for large number of different
random systems in nature. Its main assumptions are ran-
domness, alternation and quenching of coupling constants,
which reasonably reflect the crucial properties of random
magnets with localized magnetic moments [2], structurally
disordered materials [9], and large number of other sys-
tems. In particular, alternation means that there are fer-
romagnetic as well as antiferromagnetic couplings (attrac-
tive and repulsive in the language of particle dynamics
in structurally disordered compounds and alloys [9]), and
quenching means that there exists a large difference be-
tween relaxation times of couplings and magnetic degree
of freedom (spins).

The typical example of a spin-glass is a dilution of a
magnetic metal (such as Fe or Mn) in a non-magnetic host
(for example Cu), where the concentration of the magnetic
metal is not very large. Thus there is no direct exchange
interaction between magnetic ions, but due to conduction
electrons of Cu an indirect exchange interaction is possi-
ble (RKKY interaction) [9]. This interaction has oscillat-
ing character with respect of the distance between a pair
of ions, and because the positions of magnetic ions in the
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dilute are random we have the typical case of spin-glass.
By a more simple and evident mechanism a spin-glass is
realized in a dilution of ferromagnetic metal with antifer-
romagnetic one.

However, in all these cases there can be some doubts
about truly quenching of coupling constants. Furthermore,
several independent mechanisms can be pointed out for
relatively slow changing of coupling constants with time:
1) diffusion of magnetic ions; 2) the distance between a
pair of ions can be changed due to external variations of
pressure [10]. Such reasons very naturally induce develop-
ments of spin-glass models where coupling constants are
not quenched variables a priori, but change with time,
according to some slow stochastic process. The particu-
larly interesting case will arise if the characteristic mutual
equilibration time between spins and coupling constants is
very large, and there can be non-equilibrium states, where
these subsystems are described by different temperatures
T , TJ [24,28,29]. This is the general setup of the non-
equilibrium thermodynamics [3,5–7]. As an example of
this scenario the electron-ion plasma can be mentioned,
where the mutual equilibration time is very large due to
the large difference between masses of electron and ion [4].
To describe the situation, one can introduce two different
thermostats with temperatures T and TJ . The conceptual
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and technical advantages of this approach were stressed by
Bergmann and Lebowitz [6], and especially Meixner [7].

First phenomenological spin-glass models with
time-dependent coupling constants were consid-
ered by Horner [22]. The two-temperature approach
was introduced by Coolen et al. [24] and Dotsenko
et al. [28]. On the other hand, a self-generated effec-
tive temperature appeared also in somewhat different
context. It was employed to describe early glassy ex-
periments [12,13], the long-time dynamics of certain
models [14,15,17], and recently was put in the context of
the non-equilibrium thermodynamics, analyzing exactly-
solvable systems [16,37,41]. Our approach in the present
paper is complementary: We assume the adiabatic
separation of time-scales, and existence of two fixed
temperatures for the different components.

We shall investigate the two-temperature dynam-
ics and statics of the p-spin interaction spin glass
model [32,35,37]. The statics of the model is described by
one step of replica symmetry breaking (1RSB). The transi-
tion is first-order-type. Near the spin glass transition point
the order parameter has a discontinuity [32,37], but there
generally is no latent heat. The dynamics of the model
is analytically tractable and has a rich structure [14,35].
Due to the systems sensitiveness to the interchange of the
limits N → ∞ and t → ∞, there is a difference between
the long time limit of the dynamics and the statics: The
critical temperatures for the spin glass transition which
are derived from the statics (where Gibbs distribution is
assumed a priori) and from the dynamics (Langevin equa-
tions with typical initial conditions) are known to be dif-
ferent; this fact can be traced back to omission of activated
processes in the mean-field dynamics [18,21,16]. There is
a related difference in the thermodynamics of the system
derived via the two approaches [38].

This paper is organized as follows. In Section 2 the dy-
namics of the model is introduced via a set of Langevin
equations. In Section 3 we discuss the case where the cou-
pling constants are fixed with respect of the dynamics of
the spins (adiabatic statics). For this case we construct a
generalized two-temperature thermodynamics. The con-
siderations in this section are actually more general, and
do not depend on the details of the adiabatic system. This
general theory is applied to the concrete case of the mean-
field spherical spin-glass model in Section 4. We also dis-
cuss different phase transitions which arise in this context.
The detailed discussion of thermodynamical quantities is
given.

In Section 5 the stationary (time-translation invari-
ant) dynamic of the spin-glass model is investigated. We
restrict ourselves to the high-temperature case, where this
dynamics is physically relevant. In the adiabatic case it is
shown that there is a dynamical phase transition point if
the temperature of coupling constants is not smaller than
the temperature of spins. Effects connected with large ob-
servation times are considered. The summary of our re-
sults is given at the last section. Some technical questions
are considered in the appendices.

2 The multi-spin interaction model
and its heat baths

In the mean-field spherical p-spin model we add a har-
monic energy for the couplings, yielding

H =
∑

1≤i1<···<ip≤N
Ji1...ipσi1 · · ·σip

+
v

2J2
N

∑
1≤i1<···<ip≤N

J2
i1...ip , (2.1)

where J2
N = p!J2/(2Np−1) is the usual normalization fac-

tor for mean-field models, with J and v being fixed en-
ergy scales. We assume that the coupling constants and
the spins interact with heat baths at temperatures TJ and
T , respectively. The (overdamped) Langevin equations for
the dynamics in this model have the following form:

Γ∂tσi = −rσi −
∂H
∂σi

+ η i(t),

〈ηi(t)ηj(t′)〉 = 2ΓTδijδ(t− t′) (2.2)

Γ̄J∂tJi1...ip = − ∂H
∂Ji1...ip

+ ηi1...ip(t),

〈ηi1...ip(t)ηj1...jp(t′)〉 = 2Γ̄JTJδi1...ip,j1...jpδ(t− t′). (2.3)

Here r(t) is the Lagrange multiplier for enforcing the
spherical constraint

∑
i σ

2
i (t) = N , while Γ and Γ̄J are the

damping constants. The coupling constants Ji1...ip and the
noises ηi1...ip are symmetric with respect of interchange of
the indices. In equations (2.2, 2.3) so-called Einstein rela-
tion holds between the strength of noise and the damping
constant. This means that the thermal baths themselves
are in thermal equilibrium [8]. For ensuring the correct
thermodynamical limit we must take: Γ̄J = ΓJ/J

2
N (see

Appendices A, B).
Straightforward calculations show that if v ∼ TJ and

the limit ΓJ 7→ ∞ is taken first, followed by TJ 7→ ∞, then
the coupling constants are quenched (with respect to the
spins) independent Gaussian random variables. This limit
thus yields the standard p-spin model (see Appendix A).

With help of standard methods [21,49] we study the
dynamics in Appendix B. We arrive at the following equa-
tions for the average dynamics of a single spin in the mean
field caused by the other ones

(Γ∂t + r)σ(t) =

pJ2

2ΓJ

∫ t

−∞
dt̄ e−(t−t̄)/τJCp−1(t̄, t)σ(t̄) +

pTJJ
2

2v
(p− 1)

×
∫ t

−∞
dt̄ e−(t−t̄)/τJCp−2(t̄, t)G(t, t̄)σ(t̄) + η(t),

〈η(t)η(t′)〉 = 2ΓTδ(t− t′)

+
pTJJ

2

2v
exp (−|t− t′|/τJ)Cp−1(t, t′), (2.4)
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where

τJ =
ΓJ
v

(2.5)

is the timescale at which the couplings change. Details
of the derivation of this equation can be found in Ap-
pendix B.

Some comments about the general structure of equa-
tion (2.4) are at order. As it is well-known that the ef-
fective dynamical equations for spin-glass systems with
quenched disorder are essentially non-Markovian, i.e.,
they depend on the “history” of the process. Evidently,
this arises due to quenching of a coupling constant with
time. In our case — on account of the characteristic time
(2.5) — the non-Markovian property is “smoothened” by
the exponential kernel (see Eq. (2.4)).

With help of (2.4) we may derive coupled equations
for the correlation function

C(t, t′) =
1
N

∑
i

〈σi(t)σi(t′)〉 (2.6)

and the response function

G(t, t′) =
1
N

∑
i

δ 〈σi(t)〉
δhi(t′)

(2.7)

describing the response of spin σi to a small local field
hi imposed on an earlier moment t′, via an instantaneous
change of the Hamiltonian as H 7→ H − hiσi. To fix the
units, we shall take Γ = 1 from now on. We find for t > t′

(∂t + r)C(t, t′) =
pJ2

2ΓJ

∫ t

−∞
dt̄ e−(t−t̄)/τJCp−1(t̄, t)C(t̄, t′)

+
pTJJ

2

2v
(p− 1)

∫ t

−∞
dt̄ e−(t−t̄)/τJCp−2(t, t̄)G(t, t̄)C(t̄, t′)

+
∫ t′

−∞
dt̄ G(t′, t̄)

(
2Tδ(t− t̄)+

pTJJ
2

2v
e−|t−̄t|/τJCp−1(t, t̄)

)
(2.8)

(∂t + r)G(t, t′) =
pJ2

2ΓJ

∫ t

−∞
dt̄ e−(t−t̄)/τJCp−1(t̄, t)G(t̄, t′)

+
pTJJ

2

2v
(p− 1)

∫ t

−∞
dt̄ e−(t−t̄)/τJCp−2(t, t̄)G(t, t̄)G(t̄, t′).

(2.9)

Generally speaking, both the relaxation toward a station-
ary state as well as fluctuations in that state are described
by this closed pair of equations. In particular, in the sec-
ond case the time-translational invariance is expected to
hold: one-time quantities do not depend of time, two-time
quantities depend only on the difference of times:

C(t, t′) = C(t− t′), G(t, t′) = G(t− t′). (2.10)

This regime only applies in the limit when the initial time
t0 goes to −∞; this was already inserted in the lower limits

of integration of equation (2.9). Indeed, then the memory
of the initial conditions is washed out, and the system
relaxes toward its stationary state. This infinity is taken
only after the thermodynamic limit (N → ∞). t − t′ can
be viewed as an observation time, or as the finding of some
clock designed to display the temporal dynamics of fluctu-
ations. It should be stressed that in its direct form, namely
without additional physical mechanisms [34,22,35,17], the
stationary dynamics applies only for temperatures higher
than the dynamical transition temperature Td [46]. This
is the case considered in the present paper (Sect. 5).

3 Two-temperature adiabatic
thermodynamics: general structure

Recently Coolen, Penney, and Sherrington [24] proposed
a dynamical approach to the statistical mechanics of spin
glass systems, where the introduction of replicas is not
needed initially (though they enter later without the
n→ 0 limit; see also [23–28]). This approach can be called
adiabatically static, because it is a static limit obtained by
taking

τJ 7→ ∞ (3.1)

immediately in the initial equations of motion (recall that
τJ remains much smaller than the initial time: τJ � | t0|).
For times much less than τJ the spins will still see random
couplings. As opposed to the standard case, the couplings
are no longer uncorrelated. The correlation of couplings is
coded in a finite TJ , and may lead to new physics.

Equations (2.2, 2.3) can be investigated by the method
of adiabatic elimination (see for example [8]). Here we go
further and construct the corresponding thermodynam-
ics. For the case of a static distribution the procedure is
as follows. First equation (2.2) is solved keeping the cou-
pling constants J fixed (adiabatic following). Further, the
Langevin equations in this case have the following equi-
librium distribution

P (σ|J) =
1

Zσ(J)
exp[−βH(σ, J)]. (3.2)

(In this section we do not write the spherical factor explic-
itly; the reader can consider it to be included in H(σ, J).)
The partition sum for given J-configuration is

Zσ(J) = Trσ exp [−βH(σ, J)] . (3.3)

In the evolution of the J-subsystem the averaging over
the fast variables in (2.3) can be carried out. At quasi-
equilibrium of the σ-subsystem this average can be per-
formed and leads to the use of equation (3.2). In this way
we get from equations (2.1, 2.2) and (2.3) a related dy-
namics for the couplings, in which H(σ, J) is replaced by
−T lnZσ(J), which plays the role of effective Hamiltonian
in the corresponding dynamics. Specifically one gets the
effective equation of motion

ΓJ∂tJi1...ip = ∂Ji1...ipT lnZσ(J) + ηi1...ip(t). (3.4)
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As the noise is due to a bath at temperature TJ (see
Eq. (2.3)), the equilibrium distribution of this equation
reads

P (J) =
Znσ (J)
Z (3.5)

where

Z =
∫

DJZnσ (J). (3.6)

This approach introduces a “dynamical” replica index

n =
T

TJ
· (3.7)

The free energy follows from the somewhat generalized
formula

F = −T
n

lnZ = −TJ lnZ. (3.8)

Now we construct the appropriate thermodynamics for
this two-temperature model using equations (3.5, 3.6). We
first need the joint distribution of σ and J . One can ex-
press the unrestricted probability P (σ, J) in terms of the
conditional probability P (σ|J) as

P (σ, J) = P (J)P (σ|J) =
Zn−1
σ

Z exp(−βH(σ, J)). (3.9)

The formula for the total energy U reads

U = Trσ
∫

DJ H(σ, J)P (σ, J), (3.10)

which can be viewed also as the average energy of the
σ-subsystem. Direct calculations show that

− 1
n

∂

∂β
lnZ

∣∣∣
n

= U, − 1
n

∂

∂β
lnZ

∣∣∣
TJ

= U − FJ , (3.11)

where
FJ = −

∫
DJ T lnZσ(J)P (J)

is the self-averaged free energy of the σ-subsystem or the
mean effective energy.

The entropies of total system and its subsystems are
defined by the usual Boltzmann-Gibbs-Shannon formula
with help of the corresponding distributions (3.9). For ex-
ample, the total entropy reads

S = −
∫

DJ Trσ P (σ, J) lnP (σ, J). (3.12)

This involves just the general, statistical definition of en-
tropy for a macroscopic system, which is also relevant out-
side equilibrium [3]. Due to the decomposition (3.9) one
gets two contributions,

S = Sσ + SJ (3.13)

where

Sσ =
∫

DJ P (J) {−Trσ P (σ|J) lnP (σ|J)} (3.14)

is our analog of the usual quenched average entropy of the
spin motion (more precisely, it is the so-called conditional
entropy [3]), while the coupling-part of the entropy reads

SJ = −
∫

DJ P (J) lnP (J). (3.15)

The analogous separation of the total entropy in two
or more parts appears in other problems of statistical
physics [50,51]. In particular, it concerns the fine-graining
procedure which introduces states of a statistical system
relative to a fixed value of some properly chosen order
parameter, which is a quantity under macroscopic con-
trol. Then the total entropy is also separated as in equa-
tion (3.13), where Sσ corresponds to average entropy of
the relative states, and SJ corresponds to entropy of the
order parameter itself. A simple example is just a piston
separating a volume with a gas in two equivalent parts.
Then Sσ is entropy of the gas in one part, and obvi-
ously SJ = ln 2. A similar separation occurs in glassy
transitions, where SJ corresponds to the configurational
entropy or complexity [16,38]. The famous phenomena
of Maxwell’s demon [50], and its subsequent reformula-
tions display that in a process of measurement Sσ can
be decreased, instead SJ increases, and the total entropy
Sσ + SJ can only increase.

Let us consider now a generalized thermodynamics
which arises in the context of equations (3.8-3.15). In fact,
to generalize the usual thermodynamics we notice the fol-
lowing relations only

F = FJ − TJSJ (3.16)
F = U − TJSJ − TSσ. (3.17)

Equation (3.16) is the usual thermodynamical formula for
the J-subsystem. The second formula is more interesting,
since it connects the characteristics of the subsystems and
the whole system. It agrees with the expression of the free
energy for a glassy system put forward previously by one
of us [16,39,40]. In that approach the equivalent of TJ is
the dynamically generated effective temperature.

The results can be written in the differential form

dF = −Sσ dT − SJ dTJ . (3.18)

If we add an external field, it can be checked that

dF = −Sσ dT − SJ dTJ −M dH. (3.19)

This implies that the first law of thermodynamics takes
the form

dU = T dSσ + TJ dSJ −M dH. (3.20)

As the last term can be indentified with dW , the work
done on the system, the change in heat reads

dQ = T dSσ + TJ dSJ . (3.21)



A.E. Allahverdyan et al.: Model glasses coupled to two different heat baths 321

Equations (3.18, 3.19, 3.20) constitute a manifestation of
a thermodynamic process in the following sense. A pro-
cess is called “thermodynamic” if its characteristic time
τth is much larger than internal relaxation times of the
considered system. Due to this condition it is possible to
represent the process as a chain of stationary states. In
our adiabatic system there are two relaxation times, τ (an
effective characteristic time of spins) and τJ with τJ � τ .
There can thus exist two types of thermodynamic pro-
cesses: A slow one with τth � τJ � τ and a relatively
fast one with τJ � τth � τ . In the second case the J-
subsystem does not change during this process, implying,
for example, dSJ = 0. We see that (3.18-3.20) represent a
slow thermodynamic process where states of both subsys-
tems are changed. This classification allows us to discuss
the heating or cooling of our system. If the cooling is slow
enough, typically both temperatures change; for example,
in the extreme cooling process we can have TJ → 0 and
T → 0 simultaneously. In the opposite case of a fast cool-
ing (or heating) process TJ is a constant while T varies in
time.

Irreversible effects also can be included in the present
scheme. In general, irreversibility means that there are
additional sources to increase entropy or decrease free en-
ergy. Namely it reads:

dF < −Sσ dT − SJ dTJ −M dH,
dU < T dSσ + TJ dSJ −M dH. (3.22)

Equation (3.17) can be easily generalized to a many-level
adiabatic system where the first part of variables is slow
with respect to the second part, the second part is slow
with respect to third part, ... For example, if we have a
three-level system with the parts: {J}, {σ1}, {σ2}, having
relaxation times τJ � τσ1 � τσ2

F = U − TJSJ − Tσ1Sσ1 − Tσ2Sσ2 . (3.23)

It should be noticed, however, that on time scales of order
τσ1 , where interesting non-equilibrium dynamics of the σ1

system occurs, the σ2-system is in equilibrium, while the
J-system is fixed; on the other hand, on timescales of order
τJ both the σ1 and the σ2 systems are in equilibrium. A
physical realization of this scenario occurs in glass forming
liquids, with their fast and slow β processes, while the J-
system then describes the configurational or α-processes.
In this context equation (3.23) corresponds also to recently
introduced models with two-level disorder: Coupling con-
stants are also considered as frozen variables with respect
to some other set of variables [25,26].

We should stress the main difference of the presented
generalized thermodynamics compared to the usual, well-
known nonequilibrium thermodynamical description [3,5].
The stationary distribution (3.2, 3.5) can be arbitrary far
from equilibrium. It is close to the corresponding Gibbsian
distribution in the limit of a small difference between T
and TJ , or for weakly-interacting subsystems σ and J .

4 Adiabatic statics

In this section we investigate the adiabatic static limit of
the mean field spherical spin-glass model introduced in
the Section 2. The free energy is described by (3.8). As in
reference [32] we have

Z =
∏
αβ

(∫
dqαβdλαβ

2πi

)
exp (−NGn(qαβ , λαβ)) (4.1)

2Gn(qαβλαβ) = −n ln 2π − µ

p

∑
αβ

qpαβ +
∑
αβ

qαβλαβ

+ ln det(−λ)

= const.− µ

p

∑
αβ

qpαβ − tr ln(q), (4.2)

where µ = pTJJ
2/2vT 2, qαβ = 〈σασβ〉 is the usual order

parameter describing the spin-glass ordering, and λαβ are
Lagrange multipliers [1,2]1. We have three independent
parameters: T , TJ = T/n, and v. In this paper we consider
phase transitions only in the following subspace of three
dimensional space of the parameters: v = TJ , n = T/TJ is
fixed, and the relevant parameter is T (of course, all such
regimes with v ∼ TJ are qualitatively equivalent). Thus
for µ we have the standard expression

µ =
pβ2J2

2
· (4.3)

As we have discussed in the previous section, there is some
regime of cooling where n indeed can be a constant.

4.1 Replica symmetric solution

In the investigation of a spin-glass the first step is to
make the Replica Symmetry (RS) assumption for the or-
der parameter [1,2]: qαβ = q (for α 6= β), where q is the
usual Edwards-Anderson parameter. In other words, one
assumes that there is only one thermodynamical state (up
to possible global symmetry transformations). The expres-
sion for the RS free energy frs = Frs/N has the following
form

2βfrs = − ln(1− q)− 1
n

ln
(

1 +
nq

1− q

)
− µ

p
(1 + (n− 1)qp) (4.4)

where q is determined by the saddle point equation

µqp−1 =
q

(1− q)(1 + q(n− 1))
· (4.5)

1 Besides (4.2) there is a contribution to the free energy
which arises from the integration by the coupling constants,
and has an orderO(Np lnN). Usually this contribution is omit-
ted (see [28] for example), because it does not depend on the
order parameter. An alternative point of view is to consider
(4.2) as the leading finite-size effect.
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In Section 5 we shall see that this equation can be ob-
tained from the long-time statics if a slow dynamics for
the coupling constants is assumed. Following (3.12-3.17)
we get for energy and entropies

2βurs = −µ
p

(1 + (n− 1)qp) (4.6)

2sσ = ln(1− q) +
q

1− q + nq
− µ

p
(1− qp) (4.7)

2sJ = ln(1 +
nq

1− q )− nq

1− q + nq
+
nµ

p
(1− qp). (4.8)

It is well-known that from a point of view of phase tran-
sitions the set of p-spin models can be divided into the
two main groups: p > 2 and p = 2. In the first case the
qualitative phase diagram of the model does not depend
on p (as long as it is finite). Thus in the main part of this
subsection we investigate the case p > 2; our results for
p = 2 will be presented at the end.

We start with investigation of equation (4.5). For high
temperatures there is only the paramagnetic phase with
q = 0. The critical point T1,rs can be defined as the first
temperature where a non-zero solution of (4.5) is possible.
For p > 2 there occurs a first-order phase transition point
with discontinuity of the order parameter

q1,rs =√
(2− n)2(p− 1)2 + 4p(p− 2)(n− 1) + (n− 2)(p− 1)

2p(n− 1)
·

(4.9)

The related onset temperature is

T1,rs = J

√
p

2
qp−2
1,rs (1− q1,rs)(1 + (n− 1)q1,rs). (4.10)

Some limiting cases can be investigated; for example, if p
is large enough we get

q1,rs ∼ 1− 1
p
, T1,rs ∼

√
n

2e
· (4.11)

Any physical solution must be stable against small per-
turbations, therefore the analysis of linear stability for a
possible replica-symmetric solutions should be performed.
The eigenvalues of the corresponding Hessian for a finite
n were computed in [32]. There are three main sectors of
fluctuations and the three corresponding eigenvalues:

Λ1 = −µ(p− 1)qp−2 +
1

(1− q)2
,
∑
β

δqαβ = 0 (4.12)

Λ2 = Λ1 −
(n− 2)q

(1− q)2(1 + (n− 1)q)
,∑

β

δqαβ 6= 0,
∑
αβ

δqαβ = 0 (4.13)

Λ3 = Λ1 −
(n− 1)q

(1− q)2(1 + (n− 1)q)

(
2− nq

1 + (n− 1)q

)
,∑

αβ

δqαβ 6= 0. (4.14)

The first eigenvalue, the so-called “replicon” or “ergodon”,
is displayed by the most coherent fluctuations (RSB is
checked usually by this eigenvalue); the third eigenvalue
corresponds to the most non-coherent fluctuations, and
the second one takes an intermediate position. To inves-
tigate the stability of the non-zero RS solution, we first
discuss which eigenvalue is relevant for different values of
n, so which is the smallest one. A simple analysis shows
that for n < 1 Λ1 is relevant, while for n > 1 Λ3 is the
most dangerous one. This result is important: the relevant
sector of the fluctuations depends on n, implying that the
whole structure of the phase space has strong dependence
on n also. At n = 1 Λ2 becomes relevant too, but it causes
no extra problem, since we have Λ1 = Λ2.

For p > 2 the paramagnetic solution q = 0 is stable
everywhere (the case p = 2 will be discussed at the end
of this section). Now we check the stability of the nonzero
solution of equation (4.5) for n < 1 . This solution mono-
tonically decreases from (4.9) to zero. From positivity of
Λ1 we get

q ≥ p− 2
n+ p− 2

· (4.15)

Thus the nonzero solution is stable only for

T ≤ Trs,st = J

√
n2p(p− 1)(p− 2)p−2

2(n+ p− 2)p
· (4.16)

Because Trs,st < T1,rs we see that the solution is stable
only for sufficiently low temperatures. In particular, for
n = 0 it is unstable for every temperature, and that ex-
plains why this solution could be discarded till now. On
the other hand, we shall show that if n ≥ 1 the RS solu-
tion is stable everywhere. Indeed, for the nonzero solution
of (4.5) Λ3 is positive, and has the following form:

Λ3 =
p(n− 1)q2 + (2− n)(p− 1)q + 2− p

(1− q)2(1 + (n− 1)q)2
· (4.17)

Further discussion of properties of replica symmetric spin-
glass solution will be given after consideration of replica
symmetry breaking solutions. In particular, we shall see
that there are other phase transitions.

4.1.1 The case p = 2

Let us now consider the special case p = 2. It is well-known
that the model with n = 0 is described statically by a
replica symmetric anzatz [30] and has non-trivial dynami-
cal properties [30,52]. For example, the Λ1 eigenvalue van-
ishes everywhere in the low temperature spin-glass phase.
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For our case Λ1 is always positive for nonzero n, since it
holds that

Λ1 =
nq

(1− q)2(1 + (n− 1)q)
> 0. (4.18)

So the correlation between the couplings removes the zero
modes and stabilizes the structure of the vacuum. Since
Λ3(p = 2, n > 1) is also a positive function we see that
for p = 2 the RS solution is stable for all n, and for all
T . In other words, the statics of the model with p = 2 is
completely described by the RS anzatz. In particular, one
gets for p = 2

q1,rs =
(|n− 2|+ n− 2)

4(n− 1)
· (4.19)

Now if n ≤ 2 the phase transition is second-order. For
n > 2 the phase transition is first-order with the follow-
ing scenario: besides T1,rs, where the spin-glass phase oc-
curs at the first time, there is also the transition point
T2,rs < T1,rs, that is determined by comparing free ener-
gies of paramagnet and spin-glass. These statements can
be illustrated analytically in the case of positive but small
n− 2. Starting from equation (4.4) we get:

q1,rs =
n− 2

2
, q2,rs =

2(n− 2)
3

, (4.20)

T1,rs = J

(
1 +

(n− 2)2

8

)
, T2,rs = J

(
1 +

(n− 2)2

9

)
·

(4.21)

The difference between free energies of the spin-glass
phase and paramagnet is positive at the transition point
T = T1,rs:

∆f(T1,rs) = J
(n− 2)4

384
> 0. (4.22)

It means that the spin-glass phase appears as metastable
one for n > 2. The free energies are equal at the second
transition point: ∆f(T2,rs) = 0. Therefore this point must
be considered as the temperature of the phase transition
from paramagnet to spin-glass. Indeed, for T < T2,rs we
have ∆f(T ) < 0: The spin-glass phase has lower free en-
ergy compared to that of the paramagnet.

The final phase diagram for p = 2 is depicted in Fig-
ure 6.

We have seen that a finite n removes the marginal
states for the p = 2 model. In the Section 5 we shall see
that a similar statement holds also for the case p > 2.
But then the condition n > 1 is needed for stabilizing the
corresponding marginal states.

4.2 Replica symmetry breaking

Now we investigate Replica Symmetry Breaking (RSB)
solutions. As we have seen in the previous subsection, for
n > 1 the stability of a RS spin-glass solution gives some

Table 1. T1,rs, T2,rs and q1,rs for different n (n > 1), and
p = 3. At T = T1,rs the RS spin-glass phase first appears as
metastable one. The thermodynamical first-order phase transi-
tion from the paramagnetic phase occurs at T = T2,rs (J = 1).

n T1,rs T2,rs q1,rs

1.01 0.6125 0.5862 0.5012

1.10 0.6271 0.6001 0.5118

2.50 0.8270 0.7543 0.5954

4.00 1.0052 0.9213 0.6228

6.00 1.2049 1.1140 0.6378

10.0 1.5289 1.3567 0.6496

hint about irrelevance of RSB in this range of n. We shall,
however, first discuss the case n < 1. Only the first step of
RSB (1RSB) is considered, because a more general type
of RSB is not possible in this model; we omit the proof,
since it can be found in [32].

Taking the usual steps [1,2] we get the following
equations

2βfrsb = −m− 1
m

ln(1− q1)

− n−m
nm

ln(1− (1−m)q1 −mq0)

− 1
n

ln(1− (1−m)q1 + (n−m)q0)

− µ

p
(1− qp1 +m(qp1 − q

p
0) + nqp0) (4.23)

where qαβ takes the values q1 and q0, and m is the RSB
parameter. For n = 0 we recover the usual 1RSB equa-
tions [32]. Following (3.12-3.17) we get for energy and
entropies

2βursb = −µ
p

(1− qp1 +m(qp1 − q
p
0) + nqp0) (4.24)

2sσ =
m− 1
m

ln(1− q1) +
1
m

ln(1− (1−m)q1 −mq0)

+
q0

1− (1−m)q1 + (n−m)q0

− µ

p
(1− qp1 +m(qp1 − q

p
0)) (4.25)

2sJ = − ln(1− (1−m)q1 −mq0) + ln(1− (1−m)q1

+ (n−m)q0)− nq0
1− (1−m)q1 + (n−m)q0

+
nµ

p
(1− qp1 +m(qp1 − q

p
0)). (4.26)

The saddle point equations are

µ(qp−1
1 − qp−1

0 ) =
q1 − q0

(1− q1)(1− (1−m)q1 −mq0)
(4.27)

µqp−1
0 =

q0
(1− (1−m)q1 −mq0)(1− (1−m)q1 − (m− n)q0)

·

(4.28)
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The parameter m is determined by its saddle point
equation,

µ

p
(qp1 − q

p
0) =

1
m2

ln
(

1 +
m(q1 − q0)

1− q1

)
− n−m

nm

q1 − q0
(1− (1−m)q1 −mq0)

− 1
n

q1 − q0
(1− (1−m)q1 − (m−n)q0)

·

(4.29)

There is another possibility to fix m: As was shown be-
fore [21,35,37], this parameter can be fixed also by the so
called “marginality condition”. The resulting theory de-
scribes metastable states, in a manner also monitored by
the dynamics [35] (see also Sect. 5). In this paper we con-
sider only the purely static condition (4.29).

First we note that there is a remarkable analogy be-
tween the RS finite-n free energy (4.4) and the free energy
of the 1RSB solution with q0 = 0. Interchanging q1 with
q and m with n correspondingly, we arrive at the identi-
cal expressions. This analogy between corresponding free
energies was considered in the SK model with similar but
more complicated techniques including two types of frozen
variables [25]. Recently XY spin-glass model has been in-
vestigated by the same approach [26]. We shall show that
a similar, perhaps more informative analogy can be found
in the dynamics of the present model.

As known, the physical interpretation of replica sym-
metry breaking is connected with decomposition of the
phase space into pure states (ergodic components) [1,2].
This structure is contained in the overlap qαβ . In partic-
ular, for 1RSB the values q1, q0 can be interpreted as the
self-overlap of a pure state and the mutual overlap be-
tween two pure states. This information is coded in the
probability distribution of overlaps:

P (q) =
1

n(n− 1)

∑
α6=β

δ(q − qαβ)

=
1−m
1− n δ(q − q1) +

m− n
1− n δ(q − q0). (4.30)

It is seen that for the interpretation of (1 − m)/(1 − n)
and (m− n)/(1− n) as probabilities we need:

n < m < 1 for n < 1
1 < m < n for n > 1. (4.31)

One could expect that conditions (4.31) are satisfied au-
tomatically, if other more obvious physical conditions (for
example, q1 > q0) are valid. However, it is not so. Later
we shall show that they should be considered as additional
conditions selecting the correct solution.

4.2.1 Replica symmetry breaking with vanishing lower
plateau

Let us now discuss the solution of equations (4.27, 4.29)
for the case q0 = 0. Then the solution itself becomes inde-
pendent on n. However, the dependence on n does enter

through equations (4.30, 4.31). The considered solution
has partly been investigated in [32,33]. First we note that
there is a convenient parametrisation of equations (4.27,
4.29) [32,33]. If we denote

c =
mq1

1− q1
(4.32)

then for this quantity we get the temperature independent
equation

c2

p
= (1 + c) ln(1 + c)− c. (4.33)

The positive solution of this equation should be selected.
(The authors of [32] employ the slightly different variable
y = 1/(c+ 1).) Taking this into account, the equation for
q1 reads

µqp−1
1 =

q1
(1 + c)(1− q1)2

· (4.34)

The highest temperature for which this equation has a
non-zero solution will be denoted by T1,rsb:

T1,rsb = J

√
2(1 + c)

p

(
p− 2
p

)p−2

, (4.35)

and q1 at this point has the value

q1(T1,rsb) =
p− 2
p
· (4.36)

Further, using (4.32) we get

m(T1,rsb) =
2c
p− 2

· (4.37)

This value is greater than 1 for all p > 2. On the other
hand, the parameter m monotonically decreases with tem-
perature from (4.37) at T = T1,rsb to zero at T = 0
(see (4.43)). It means that for n > 1 only a part of
the solution from m(T1,rsb) to m = 1 can be physically
permissible; otherwise we get physically meaningless re-
sults for the weights (4.30). Namely, if n is in the in-
terval 1 < n < m(T1,rsb), then the temperature, where
the solution appears as physical one, will be determined
from the condition m(T ) = n. In the opposite case, where
m(T1,rsb) < n that temperature is just T1,rsb itself.

On the other hand, in case n < 1 the physical part
is consistent only with n < m < 1. Namely, for n < 1
the possible transition point must be determined from the
condition m = 1. The transition to the RSB spin-glass
phase with vanishing lower plateau, and m = 1 at the
critical point, has been found in [32] for n = 0. It occurs
at the temperature

T2,rsb = J

√
p

2(1 + c)

(
1 + c

c

)2−p
· (4.38)
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Fig. 1. The free energy (subtracted the paramagnetic con-
tribution) of the 1RSB spin-glass phase with vanishing lower
plateau vs. temperature (p = 3). For n > 1 (n < 1) a part of
the right-hand (left-hand) branch of the presented curve should
be chosen as the physically permissible one (see Eq. (4.30)). It
turns out that the chosen part of the right-hand branch always
corresponds to a metastable phase.

At this point q1 jumps from zero to

q1(T2,rsb) =
c

c+ 1
, (4.39)

and it goes monotonously to unity when T tends to zero.
The transition is intermediate between first-order and
second-order: the order parameter has a jump but the
energy and entropy are continuous, as we see from equa-
tions (4.24–4.26).

Note that the free energy in the spin-glass phase is
higher than that of the paramagnetic state (Fig. 1). It is
usual for this type of phase transitions [1,2,44,32].

If p 7→ ∞ then also c 7→ ∞:

J2

2T 2
2,rsb

∼ (ln c− 1) exp
(

1
ln c− 1

)
7→ ∞ (4.40)

q1 ∼ 1− 1
c
· (4.41)

This behavior in the large-p limit is in the sharp contrast
with the case of p-interaction Ising spin-glass [31], where
phase transition point is finite when p 7→ ∞.

Let us now consider the zero temperature behavior of
the solution with fixed but not very large p. A simple
analysis shows that in this case

1− q1 ∼
T

J

√
2

p(1 + c)
, (4.42)

m ∼ T

J
c

√
2

p(1 + c)
, (4.43)

f(T 7→ 0) = − J(c+ p)√
2p(1 + c)

· (4.44)

Note again that the free energy of the solution remains fi-
nite in the zero-temperature limit in contrast to the para-
magnetic free energy which tends to minus infinity.

- 0.1

(a)

0.6

0.3

0.15
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T
0.50.4

Fig. 2. The entropies (subtracted the corresponding para-
magnetic contributions; see Eqs. (4.25, 4.26)) of the 1RSB
spin-glass phase with vanishing lower plateau vs. temperature
(p = 3, n = 0.5). (a) sσ, entropy of the spins; (b) s, the total
entropy; (c) sJ , entropy of the coupling constants. The curves
start at the transition point T = T2,rsb.

The considered solution is stable and all relevant eigen-
values of the Hessian are nonzero at the phase transition
point. In particular, for the relevant eigenvalue: (see [32]
for the derivation)

Λ1 = −µ(p− 1)qp−2
1 +

1
(1− q1)2

, (4.45)

we get from equation (4.34):

Λ1 =
1

(1− q1)2

(
1− p− 1

1 + c

)
> 0. (4.46)

The eigenvalue (4.45) describes fluctuations deep inside
a pure state. As usual, critical slowing down is absent at
this static first order phase transition. Later we shall show
that in the long-time dynamics there is a dynamical phase
transition for all n < 1.

It is of interest to discuss the behavior of entropies sσ,
sJ , and s in the vicinity of the transition point T2,rsb. In
particular, we have from equations (4.24–4.26)

2sσ = ln(1− q1) +
1
m

ln(1 + c) +
µ

p
(1− (1−m)qp1)

(4.47)

2sJ =
nµ

p
(1− (1−m)qp1). (4.48)

In spite of the jump of q1, they change continuously from
the paramagnetic phase to the spin-glass one. We shall
compare their behavior in spin-glass and paramagnet at
the same value of temperature. For T < T2,rsb the entropy
of the spins becomes higher in the spin-glass phase: sσ >
sσ(q1 = 0). On the other hand, the entropy of the coupling
constants is lower: sJ < sJ(q1 = 0), as it is obvious from
equation (4.48). Consequently, the total entropy s = sσ +
sJ is also higher in the spin-glass phase as compared to its
value for q1 = 0. The behavior of the entropies is presented
in Figure 2. Further properties of the RSB spin-glass phase
(in particular, for n > 1) will be discussed later when
constructing the complete phase diagram.
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4.2.2 Replica symmetry breaking with non-vanishing lower
plateau

We made an extensive but unsuccessful search for addi-
tional RSB phases. The 1RSB solution with the vanishing
lower plateau is the only physically relevant one. Here we
present one of those attempts, which allows us to illus-
trate the importance of condition (4.31). A solution with
q0 emerging smoothly from q0 = 0 is not compatible with
the saddle-point equations (4.27). Therefore we investi-
gate a continuous transition from the RS solution with
q ≡ q1 > 0 and a RSB solution with q1 > 0, q0 > 0 but
small ∆q = q1 − q0. With this assumption we have the
following equations at the transition point

µc(p− 1)qp−2
c =

1
(1− qc)2

(4.49)

µcq
p−2
c =

1
(1− qc)(1 + (n− 1)qc)

· (4.50)

The first of these expresses that the replicon eigenvalue
Λ1 of a RS solution with q = q1 vanishes. The transition
point is thus given by

T = Jn

√
p

2
(p− 2)p−2(p− 1)

(p− 2 + n)p
· (4.51)

The order parameters q0 = q1 have the following jump at
the phase transition point

qc =
p− 2

p− 2 + n
· (4.52)

As we see, it is the same point where stability of the
RS spin-glass solution is restored. There is a useful
parametrization of equations (4.27–4.29):

x =
q0
q1
, c =

m∆q

1− q1
, (4.53)

then we have

1− xp − pxp−1(1− x)
p(1− xp−1)(1− x)

=
(1 + c) ln(1 + c)− c

c2
· (4.54)

Using equations (4.53, 4.54) we get at the transition point:

mc =
n

2
· (4.55)

It can be proved that m decreases with decreasing of tem-
perature, and m = 0 when T = 0. According to our dis-
cussion at equations (4.30, 4.31) it means that a 1RSB
phase with non-vanishing lower plateau cannot be consid-
ered as a physical one, at least not for n < 2. For n > 2
and then m(T ) > 1 this is unphysical, since the condition
q1 > q0 is violated (this condition does not depend on n,
and it is necessary for the interpretation of q0 and q1 as
overlaps).

This behavior is in sharp contrast with SK mo-
del [29,28] where the main effect of finite n is to intro-
duce a non-vanishing lower plateau. This plateau increases

with n, and replica symmetry breaking disappears at some
critical value. It should be noted that in our case only
the property (4.31) forbids the existence of the considered
phase for n < 2. All other requirements are satisfied: it is
stable, and has well-defined free energy. Stability can be
checked by positivity of the following eigenvalues

Λ1 = −µ(p−1)qp−2
1 +

1
(1−q1)2

, (4.56)

Λ0 = −µ(p−1)qp−2
0 +

(
1− q1+nq0

(1−q1)(1−q1+m∆q+nq0)

)2

·

(4.57)

We should mention the possibility of more general RSB
solutions in our model. For n = 0 it was proven [32] that
1RSB solutions are the most general RSB ones, and more
orders of RSB are impossible. This proof can be general-
ized also for n > 0. The physical meaning of this statement
is that a finite n introduces correlations between coupling
constants partially removing frustrations, and cannot lead
to more complicated phase space with more orders of RSB.

4.3 The static phase diagram

In this subsection we construct the phase diagram of our
model by considering all physically relevant solutions (it
means stable and with the correct probability of overlaps
(4.30)): paramagnet, RS spin-glass, RSB spin-glass with
vanishing lower plateau.

4.3.1 The case n < 1

First we discuss the case n < 1. For high temperatures
the system is in the paramagnetic phase. If temperature
decreases, then at T = T2,rsb (see Eq. (4.38)) the RSB
spin-glass with vanishing lower plateau appears. Its free
energy is greater than the paramagnetic one (see Fig. 1)
but, nevertheless, it is chosen as the relevant phase. It is
the usual choice, and a possible argument is a hypothesis
about a non-perturbative instability of the paramagnetic
state below T2,rsb. As far as we know, there is no con-
vincing proof of this statement. There is only some hint
gained from an analysis of finite-size corrections in a Potts
glass [44]. As we have mentioned already, this phase tran-
sition is first-order with respect to the order parameter,
but second-order with respect to derivatives of free energy.
In particular, the latent heat (the difference between the
energies of the high temperature and the low temperature
phase at the transition point) vanishes.

At the present stage we shall go back to the RS spin-
glass solution, and analyze its free energy. Recall that this
phase is stable for T < Trs,st (see Eq. (4.16)), and for
some range of n we have Trs,st > T2,rsb (see Fig. 3). In
particular, the sign of

∆frs ≡ frs − fpara

= −T
2

ln(1−q)− T

2n
ln
(

1+
nq

1−q

)
+
βJ2

4
(1−n)qp

(4.58)
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Fig. 3. Free energies (subtracted the paramagnetic free en-
ergy) vs. temperature (n = 0.955, p = 3). Thick line: the RS
spin-glass phase; normal line: the RSB spin-glass phase with
vanishing lower plateau. The arrow denotes the phase transi-
tion point occurring at T = T3,rs from the 1RSB spin-glass
phase to the RS one.

should be checked. In this respect the interval 0 < n < 1
is divided into two subintervals. For n0 < n < 1 (where n0

is some positive value, to be discussed later) it holds that
∆frs(Trs,st) < 0. Taking into account that at T = Trs,st

RS spin-glass first appears as a physical solution, we con-
clude that in this range of temperatures it should be con-
sidered as metastable with respect to the paramagnet,
in spite of its lower free energy. The opposite point of
view will mean that T = Trs,st must be considered as
the point of a phase transition which is meaningless, be-
cause ∆frs(Trs,st) 6= 0. If temperature is decreasing fur-
ther we get the point T = T2,rs where ∆frs(T2,rs) = 0,
and ∆frs(Trs,st) > 0 for T2,rs > T . This behavior of the
free energy is presented by Figures 3, 4. However, this
point is always lower than the transition temperature from
the paramagnet into the RSB spin-glass phase with van-
ishing lower plateau: T2,rsb > T2,rs. (On the other hand
T2,rsb ≤ T2,rs for 1 ≤ n, but this case is physically dif-
ferent and will be discussed a bit later.) Therefore, the
temperature T = T2,rs is not considered as the thermo-
dynamical phase transition point towards the most stable
phase. Certainly, it is only the point where RS spin-glass
phase becomes more stable than the paramagnetic state.

For n < n0 one has ∆frs > 0, so the RS spin-
glass state at the beginning appears with higher free en-
ergy than the paramagnet. n0 is defined by the condition
∆frs(Trs,st) = 0. In Table 2 we represent the values of n0

for different p . In particular, we see that n0(p) decreases
with increasing p.

According to equations (4.30, 4.31) for n < 1 any 1RSB
spin glass cannot exist as a physical one if m < n. From
Section 4.2.1 we know that for the RSB spin-glass with
vanishing lower plateau, m monotonically decreases with
temperature from m = 1 at T = T2,rsb to m = 0 at T = 0.
It means that a phase transition should exist from a RSB

T
0.590.58

0.08

- 0.04

f - f

0.50

pm

Fig. 4. Free energies (subtracted the paramagnetic contribu-
tion) vs. temperature (n = 0.8, p = 3). Thick line: the RS
spin-glass phase; normal line: the RSB spin-glass phase with
vanishing lower plateau. The arrow denotes the phase transi-
tion point at T = T3,rs.

Table 2. n0 for different p (J = 1).

n0 p

0.68632 3

0.61605 4

0.53108 6

0.36803 18

0.31670 30

spin-glass with vanishing lower plateau to a RS spin-glass
at a temperature T3,rs defined by

m(T3,rs) = n. (4.59)

As equations (4.23–4.29) show, the order parameters are
equal at this point: q1 = q. It is also easy to show that
the free energies, energies and entropies sσ, sJ of the cor-
responding phases are also equal. Thus, at T = T3,rs the
order parameter q0 jumps from zero to q1, ensuring the
replica-symmetric behavior for T < T3,rs. On the other
hand, q1 changes continuously. Both the RS spin-glass and
the RSB spin-glass with vanishing lower plateau are stable
at and around T = T3,rs. In this sense the transition at
T = T3,rs is very similar to the transition occurring from
the paramagnetic state at T = T2,rsb, where q0 changes
continuously (i.e., remains zero) but q1 has a jump. It is
worth to note that for T < T3,rs the free energy of the RS
spin-glass is lower than the free energy (more exactly its
analytical continuation) of the RSB spin-glass with van-
ishing lower plateau. Different values of T3,rs are presented
in Table 3.

In summary, we conclude that when temperature is
decreasing for fixed n < 1 there are only two tempera-
tures of thermodynamical phase transitions: 1) T = T2,rsb

is the transition point from the paramagnet to the RSB
spin-glass with vanishing lower plateau. 2) T = T3,rs is
the transition point from the RSB spin-glass into the RS
phase. These transitions are quite similar by their physical
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Table 3. The transition temperature T3,rs from the 1RSB spin-
glass phase to the RS one, for different n (n < 1), and p = 3
(J = 1).

n T3,rs

0.90 0.5575

0.80 0.5240

0.70 0.4805

0.60 0.4413

0.25 0.2326

meaning. The main distinction is in the difference between
free energies of the corresponding low-temperature and
the high-temperature phase. The temperatures Trs,st and
T2,rs also have certain physical meanings, but are not con-
sidered as true transition temperatures.

4.3.2 The case n > 1

In the case n > 1 there are three relevant solutions: the
RS spin-glass (q > 0), the paramagnet (q = 0), and the
RSB spin-glass with vanishing lower plateau in the region
1 < m < n. Recall that this last state formally exist for
T < T1,rsb (see Eq. (4.35)), but the region of its actual ex-
istence must be chosen according to the value of n as it has
been done for n < 1. Doing so we immediately conclude
that for n > 1 the RSB spin-glass with vanishing lower
plateau cannot be considered as the most stable one, be-
cause its free energy is always higher than the free energy
of the paramagnetic state (Fig. 1). It can be viewed only
as a metastable one in the above-mentioned region. The
behavior of the corresponding free energy is presented in
Figure 1. Therefore, our attention will be restricted only
to the paramagnet and the RS spin-glass phase.

According to our discussion in Section 4.1, the RS spin-
glass phase first appears at T = T1,rs (Eq. (4.9)) but its
free energy at this point is higher than the paramagnetic
one. These free energies are equal when T = T2,rs, and
for T < T2,rs the RS spin-glass phase has lower free en-
ergy. Thus, the temperature T2,rs is the thermodynamical
phase transition point. This transition is first order, and
it is connected with a jump of the order parameter q. It is
obvious from equation (4.6) that for T < T2,rs the mean
energy of the spin-glass phase is also lower than the para-
magnetic one. It means that the latent heat is positive
as for (usual) first-order phase transitions in equilibrium
systems. Values of T1,rs, and T2,rs are represented in Ta-
ble 1. In particular, this scenario of phase transition is the
usual one for multi-spin interaction ferromagnets [9,20],
for some metamagnetic materials [9] or for phase transi-
tions in a compressible lattice [11]. For such a system the
jump of entropy at the transition point is negative (i.e.,
a low-temperature phase has lower entropy) according to
the usual relation F = E − TS between free energy, en-
ergy and entropy. At this stage it should be recalled again
that our system is not in the usual equilibrium, and we are
considering phase transitions in the nonequilibrium steady
state. In particular, we have the basic relation (3.17) be-

0.8 0.9
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(b)

(d)

T

Fig. 5. Thermodynamical functions (minus the correspond-
ing paramagnetic contributions) of the RS spin-glass (n = 4,
p = 3) vs. temperature. The thick arrow denotes the phase
transition point from paramagnet to the RS spin-glass phase
at T = T2,rs. The normal arrow denotes the temperature
T = T1,rs, where the RS spin-glass solution appears first as
a metastable phase. Thick line: free energy; (a) sJ , entropy of
the coupling constants; (b) s, the total entropy; (c) urs, mean
energy; (d) sσ, entropy of the spins.

tween free energy, energy, and entropies. At the transition
point T = T2,rs this relation can be written as

∆u = T∆sσ + TJ∆sJ , (4.60)

where ∆u = urs − upm, ∆sσ = sσ,rs − sσ,pm, and ∆sJ =
sJ,rs − sJ,pm are differences between the corresponding
quantities of the RS spin-glass and the paramagnet, and
urs, sσ,rs, sJ,rs are defined by equations (4.6–4.8). Further,
T and TJ are connected through T = T2,rs. In particu-
lar, positive latent heat means ∆u < 0, and consequently
T∆sσ + TJ∆sJ < 0. However, it is interesting to know
the signs of ∆sσ, ∆sJ , and ∆s = ∆sσ + ∆sJ separately
because these quantities have independent physical mean-
ings, extensively discussed in Section 3. We get

∆s > 0, ∆sJ > 0, ∆sσ < 0. (4.61)

The behavior of ∆s is in the sharp contrast with usual,
equilibrium first-order transitions. This somewhat surpris-
ing fact should deserve further attention. The behavior of
various thermodynamical quantities near T2,rs is presented
in Figure 5. The difference between spins entropies ∆sσ
becomes positive starting from some temperature lower
than T2,rs. In other words, for sufficiently low tempera-
tures both entropies are higher in the spin-glass phase.
Let us recall in this context that free energy and mean
energy of the spin-glass phase are lower than the param-
agnetic ones for sufficiently low temperatures.

The positivity of the latent heat, and the result (4.61)
holds also for the first-order phase transitions occurring
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Fig. 6. The static phase diagram of the model in the n–T plane
for p = 2. The paramagnetic phase is denoted by PM, and EA
means the RS or Edwards-Anderson spin-glass phase. (a) T =
J , the line of the second-order transitions; (b) T = T2,rs(n), the
line of the first-order transitions with a positive jump of the
total entropy. The thick dot indicates the multicritical point.

for p = 2, n > 2 (see Sect. 4.1.1). In the case of positive
but small n−2 we can get analytical expressions for ∆sσ,
∆sJ , and ∆s using equations (4.20–4.22). The jump q2,rs
of the order parameter is positive but small at T = T2,rs,
and we get to leading order

∆sσ = −1
2
q2
2,rs +O(q3

2,rs) < 0,

∆sJ =
1
2
q2
2,rs +O(q3

2,rs) > 0,

∆s =
5
24
q3
2,rs +O(q4

2,rs) > 0. (4.62)

This is an analytical illustration of the more general
result (4.61).

The special attention should be devoted to the case
n = 1. The free energy, and the energy of the RS spin-glass
coincide with their analogs for the paramagnetic phase.
However, from the point of view of the order parameter,
the phase transition occurs to the RS spin-glass phase
(when decreasing temperature for a fixed n = 1). Further,
q increases monotonically from q = (p− 2)/(p− 2 + n) at
T = T2,rsb = T2,rs = T3,rs to q = 1 at T = 0. The phase
transition is first-order for p > 2, and second-order for
p = 2. It is interesting that sσ and sJ depend on q even
for n = 1, however, they compensate each other so that
their sum s = 0. The final phase diagram is presented in
Figure 7.

5 Stationary dynamics

In this section the stationary (time-translation invariant)
dynamics of our model will be investigated. In particular,
we study the dynamical phase transition, compare the pre-
dictions of the long-time dynamics with the static ones, as

T

n

EA

(b) (a)

(c)

PM

SG-1

.1

Fig. 7. The static phase diagram of the model in the n–T
plane for p > 2. The paramagnetic phase is denoted by PM,
and SG-1, EA mean correspondingly the RSB spin-glass phase
with vanishing lower plateau, and the RS spin-glass phase. (a)
T = T2,rsb(p); (b) T = T3,rs(n, p); (c) T = T2,rs(n, p). The lines
(a) and (b) indicate first-order transitions without latent heat;
(c) indicates the first-order transition with the positive latent
heat, and a positive jump of the total entropy. The thick dot
indicates the multicritical point.

well as investigate effects connected with very large obser-
vation times. The case when temperature is lower than
the dynamical transition point will not be attached, be-
cause the assumption of stationarity does not hold there
without additional mechanisms (regularization) [22,35].
equations (2.8, 2.9) have the following form in the time-
translation invariant regime

(∂t + r)C(t) =
pJ2

2ΓJ

∫ ∞
0

dt̄ e−t̄/τJCp−1(t̄)C(t− t̄)

+
pTJJ

2

2v
(p− 1)

∫ ∞
0

dt̄ e−t̄/τJCp−2(t̄)G(t̄)C(t − t̄)

+
pTJJ

2

2v

∫ ∞
0

dt̄ e−(t+t̄)/τJCp−1(t+ t̄)G(t̄), (5.1)

(∂t + r)G(t) =
pJ2

2ΓJ

∫ t

0

dt̄ e−(t−t̄)/τJCp−1(t− t̄)G(t̄)

+
pTJJ

2

2v
(p− 1)

∫ t

0

dt̄ e−(t−t̄)/τJCp−2(t− t̄)G(t− t̄)G(t̄).

(5.2)

5.1 Adiabatic dynamics: not very large observation
times

Not very large observation times are defined by the con-
dition t � τJ : The spins relax to their stationary state,
while the coupling constants are fixed. The usual form of
FDT

∂tC(t) = T (−G(t) +G(−t)) (5.3)
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does hold in this case, since when the coupling constants
are frozen the violation of the detailed balance condition
(which arises in account of a difference between temper-
atures, and is responsible for a possible breaking of equi-
librium relations) cannot be effective [43]. Applying FDT
one gets from equation (5.1)

(∂t + r)C(t) =
pJ2

2ΓJ

∫ ∞
0

dt̄ e−t̄/τJCp−1(t̄)C(t− t̄)

+
pTJJ

2

2v
(p− 1)

∫ ∞
0

dt̄ e−t̄/τJCp−2(t̄)C(t− t̄)G(t̄)

+
pTJJ

2

2v

∫ ∞
0

dt̄ e−t̄/τJG(t̄)Cp−1(t+ t̄). (5.4)

In the last two integrals one can take exp(−t̄/τJ) ∼ 1,
since G(t̄) already restricts the relevant domain of inte-
gration to t̄ � τJ . In the first integral we find after a
change of the variable:

1
ΓJ

∫ ∞
0

dt̄ e−t̄/τJCp−1(t̄)C(t− t̄) 7→ 1
v
qp, (5.5)

where

q = limt→∞(limτJ→∞C(t)). (5.6)

To investigate phase transitions we take our usual restric-
tion to the parameters of the model: v = TJ , n ≡ T/TJ ,
µ = pβ2J2/2. The long-time limit of (5.4) gives RS equa-
tion (4.5). Indeed, for determination of q we can take the
two limits: t = 0 where C(0) = 1, ∂tC(t)|t=0 = −T , and
t 7→ ∞ (in the sense of (5.6)) where C = q:

βr − 1 = µnqp + µ(1− qp) (5.7)

βrq = µnqp + µ(q − qp) + µqp−1(1− q). (5.8)

As shown in Section 4, the non-zero solution of this equa-
tion correctly describes the low-temperature statics of the
system for n > 1.

What is the meaning of a dynamical phase transition?
Our starting point involves overdamped Langevin equa-
tions which are first order with respect of time. Thus, our
dynamics is purely relaxational: C(t) decays starting from
C(0) = 1. In other words, we have: ∂tC(t) ≤ 0. One defines
the dynamic phase transition point as the highest temper-
ature, where this condition is broken for some t > 0 2. We
obtain from (5.4)

(∂t + r)C(t) = µTC(t) + (βr − µ− 1)T

+ µTCp−1(t)(1− C(t))

− µT
∫ t

0

dt̄∂t̄C(t̄)[Cp−1(t− t̄)− Cp−1(t)]

+
pJ2

2ΓJ

∫ ∞
0

dt̄ e−t̄/τJCp−1(t̄)

× (C(t − t̄)− C(t̄)). (5.9)

2 The dynamical phase transition should not be mixed with
transitions predicted by the dynamics in general. Within the
common definition it is a kind of dynamical instability, whereas
other “non-statical” scenarios are also possible [42].

In the last integral one can take exp(−t̄/τJ) = 1 according
to equation (5.6); this integral converges, but can be ne-
glected due to the large factor 1/ΓJ . Now equation (5.9)
reads

∂tC(t) = T (1− C(t))
[
βr − µ− 1

1− C(t)
+ µCp−1(t)

]
− µT

∫ t

0

dt̄∂t̄C(t̄)[Cp−1(t− t̄)− Cp−1(t)].

(5.10)

The integral is negative for ∂tC(t) ≤ 0, and close to zero
due to the factor Cp−1(t− t̄)−Cp−1(t) for large t. Thus,
one gets

βr − µ < 1
1− C(t)

− µCp−1(t). (5.11)

The highest temperature, where this condition is broken,
can be found with

βr − µ =
1

1− C(t)
− µCp−1(t) (5.12)

1
[1− C(t)]2

− (p− 1)µCp−2(t) = 0. (5.13)

On the other hand equation (5.11) should be consistent
with equations (5.7, 5.8), and then with q determined by
equation (4.5). One derives from equations (5.7, 5.8, 5.12,
5.13):

(n− 1) µqp =
C(t)

[1− C(t)]2

(
p− 2
p− 1

− C(t)
)
. (5.14)

As known from Section 4, for T ≥ T1,rs only the param-
agnetic solution q = 0 exists. Substituting this value to
equations (5.14) one obtains a dynamical phase transition
with a jump

qd =
p− 2
p− 1

, (5.15)

at the temperature

Td =

√
pJ2

2
(p− 2)p−2

(p− 1)p−1
· (5.16)

This is exactly the dynamical transition obtained for the
case n = 0 [14,35]. In our case it will exist only when
Td ≥ T1,rs, which is satisfied for n < 1, p > 2 and n < 2,
p = 2 (in this last case Td and qd = 0 coincide with
their statical values). For Td ≤ T1,rs the solution of equa-
tion (4.5) with q > 0 should be taken in equation (5.14),
since it is the largest possible solution, and decaying from
C(0) = 1 the correlation function C(t) will stick there.
That is the reason why the transition temperature T2,rs

(Tab. 1, Eq. (4.21)) is not reflected in the dynamics. For
n ≥ 1 one has 1 ≥ C(t) ≥ q ≥ q1,rs ≥ qd = (p−2)/(p−1),
namely equation (5.14) cannot be valid for n > 1, since
the left-hand side is positive, and the right-hand side is
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negative. Thus, for n > 1 and q > 0 there is no dynamical
phase transition.

This conclusion is supported by the results obtained
from the statics, since the dynamical phase transition
can be reflected in the replica theory by the condition
of marginality [21,37,47,48]: The “replicon (ergodon)”
eigenvalue of the Hessian is equal to zero at the transition
point. This is an alternative scheme to fix the parameter m
in the replica theory. For n ≤ 1 the replicon eigenvalue is
given by equation (4.12), and the condition of marginality

Λ1 = −µ(p− 1)qp−2 +
1

(1− q)2
= 0 (5.17)

is nothing else, but equation (5.13) in the long-time limit.
However, for n > 1 Λ1 is no longer the most relevant
(minimal) eigenvalue of Hessian, and condition (5.17) has
no physical meaning there.

The standard interpretation of this phase transition is
the following [17,22,14,35–37]. The dynamics is investi-
gated in the limits: the initial time → −∞ after the ther-
modynamic limit N →∞. In contrast, in the purely static
investigation by means of the Gibbs distribution, the op-
posite order of limits is implicated. It was shown that
the dynamical phase transition is induced by the highest
metastable TAP states [36] which are separated by each
other by means of infinite barriers (in the thermodynamic
limit). Now it is clear that the existence and probably the
structure of the highest metastable TAP states strongly
depends on n.

5.2 Adiabatic dynamics: very large observation times

In this subsection we have concentrated on that range of
n, where the dynamical phase transition is absent for all
T . As the previous subsection shows, there is a spin-glass
phase if the observation time is not very large: t � τJ .
However, for t ∼ τJ the coupling constants will start to
fluctuate and relax toward their own steady state. It is
expected intuitively that at such observation times the
spin-glass phase will disappear, and the resulting sta-
tionary state will be a paramagnet. Furthermore, we will
see that there are some peculiar features of this process,
which have universal character related to other glassy
systems [14,35].

In the domain t ∼ τJ → ∞ the main time-scale is
τJ ; thus, it is natural to take the following form for the
correlation and response functions

C(t) = C
(
t

τJ

)
, G(t) =

1
τJ
G
(
t

τJ

)
(5.18)

(the extra factor 1/τJ for G appears on account of the cor-
rect dimension of that quantity.) Let us also make explicit
a time-scale te, at which the correlation function stabilizes:
C(t ∼ te) = q, where q is defined by equation (4.5). By
its definition te is much higher than the relaxation time
of the spins, but much lower than the relaxation time of
the coupling constants (τJ � te). Later one will see that
a more precise value of te is not needed.

The cases t ∼ te and t < te have been studied in the
previous subsection, and now we are going to consider
the cases t ∼ τJ , t � τJ . Since the technical part of our
derivation is quite similar to those given in [14,35], we
shall mention only the main points. The corresponding
equations for C, G must be constructed from (5.1, 5.2) in
accordance of a simple physical picture occurring from the
large separation of the local relaxation times. Namely, if
the temporal argument of C(t̄), G(t̄) is less or equal te,
then the case of not very large observation times holds
with all its consequences. For instance, the usual FDT
can be used. At the same time the kernel exp(−t̄/τJ) can
be put equal to unity, as we have done in the previous
subsection. If the corresponding temporal argument has
the same order as te we put C(t ∼ te) = q, and if it has
the same order as τJ we use (5.18) accompanying with an
evident consistency condition C(0) = q.

Our transformations come to dividing the domains of
integration in equation (5.1) into two parts: from 0 to te,
and from te to ∞. The corresponding integrals in equa-
tion (5.2) are divided into three parts because more accu-
racy is needed: from 0 to te, from te to t − te, and from
t− te to∞. Now every part is treated as described above.
We omit all factors which have relatively small order when
τJ →∞. In particular, for equation (5.1, 5.2) these factors
are of order O (1/τJ) (O (1/τ2

J )).
Finally, we get the following equations (where

s = t/τJ)

rC(s) =
pJ2

2v

∫ ∞
0

ds̄ e−s̄Cp−1(s̄)C(s− s̄)

+
p(p− 1)TJJ2

2v

∫ ∞
0

ds̄ e−s̄Cp−2(s̄)G(s̄)C(s− s̄)

+
pTJJ

2

2v

∫ ∞
0

ds̄ e−(s+s̄)Cp−1(s+ s̄)G(s̄)

+
pTJJ

2

2v
βe−sCp−1(s)(1− q)

+
pTJJ

2

2v
βC(s)(1− qp−1), (5.19)

rG(s) =
pJ2

2v

∫ s

0

ds̄ e−s̄Cp−1(s̄)G(s − s̄)

+
p(p− 1)TJJ2

2v

∫ s

0

ds̄ e−s̄Cp−2(s̄)G(s − s̄)G(s̄)

+
pTJJ

2

2v
βG(s)(1− qp−1)

+
p(p− 1)TJJ2

2v
βe−sCp−2(s)G(s)(1 − q)

+
pJ2

2v
βe−sCp−1(s)(1− q). (5.20)

The usual formulation of FDT does not hold in this case.
Indeed, if the coupling constants fluctuate, then the heat
current between the thermal baths cannot be neglected.
In other words, the detailed balance condition is violated,
because there is a stationary current between the two heat
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baths, which changes its sign under time-reversal. Thus,
we have a steady non-Gibbsian state [19]. In general, such
a state does not possess any simple, or even closed, relation
between the correlation and response functions [3]. How-
ever, such a relation is possible in some particular cases. In
our case a generalized FDT exists, which is, however, non-
universal in contrast to the usual one. Nevertheless, it does
not depend on secondary details of the model. As such
it belongs to the thermodynamical picture of the glassy
state [15,41]. Let us consider the generalized FDT in the
form

∂sC(s) = T̃ (−G(s) + G(−s)) (5.21)

with some unknown coefficient T̃ . After some calculations
using (5.19), (5.20) we get

T̃ = TJ . (5.22)

It is customary to call (5.21) “Fluctuation-Dissipation Re-
lation” (FDR) or just the “modified FDT”. We have ob-
tained that the coefficient of FDR (it is TJ in the case
of Eq. (5.22), and T in the case of (5.3)) depends cru-
cially on the observation time: The correspondence be-
tween the time-scales and the temperatures is reflected in
FDR. Such phenomena were predicted recently for sys-
tems with “slow” dynamics [14,15,41]. In particular, this
is a possible fundament to generalize the notion of tem-
perature. With help of the FDR we obtain the following
formula for G(0):

G(0) =
βq(1− q)

q − (p− 2)βTJ(1− q) · (5.23)

Now the positivity of this quantity requires condition
(4.15), which is necessary for the validity of the RS as-
sumption. Since G(s) decreases from G(0) to zero, the con-
sistency condition is nontrivial only for q > 0.

Let us now discuss the limit t� τJ . We rewrite equa-
tion (5.19) taking into account (5.21, 5.22), and the con-
crete value of r:

(1− q)(qp−2 − e−sCp−2(s))C(s) =

T

∫ s

0

ds̄ e−s̄Cp−1(s̄)G(s − s̄). (5.24)

The static limit of this equation correspond to large s:

limτJ→∞(limt→∞C(t)) = lim
s7→∞

C(s) = 0, (5.25)

because in the relevant part of integral (5.24) the function
G is zero: When t/τJ → ∞ every correlation will vanish
at large times, and the system goes to the paramagnetic
phase. It is just that statement which was predicted above
starting with heuristic arguments.

There is no spin-glass phase if the spins and the cou-
pling constants have nearly equal characteristic times. It
is quite obvious in the light of the present discussion.

6 Summary

This paper is devoted to a glassy system coupled to two
heat baths. In Section 3 we use the adiabatic assumption
to construct a generalized thermodynamic. Its basic re-
lation (3.17) involves the entropies of the spins and the
coupling constants, which in the present approach have
the independent and well-defined physical meaning. The
usual local-equilibrium thermodynamics [3,5] is recovered
with weakly-interacting subsystems, or close temperatures
T , TJ . The developed theory has a general character, and
does not depend on concrete details of the considered sys-
tems. After this, in Section 4 this theory is applied to the
mean-field p-spin-interaction spherical model, extended to
have correlated random bonds, expressed by a finite tem-
perature TJ . In the limit TJ →∞, so n = T/TJ → 0, the
usual spin-glass model with totally uncorrelated bonds is
recovered. As noted recently [42], this type of correlations
can make radical changes in the phase structure. In this
context, the p-spin model is the convenient laboratory for
investigating phase transitions, since it belongs to differ-
ent universality classes for p > 2 and p = 2. Indeed, if
n is large enough there are only first-order phase transi-
tions with positive latent heat (see Figs. 7, 6). This is in
the contrast to the first-order transitions without latent
heat (p > 2) or the true second-order transitions (p = 2),
which are more typical for spin glasses and glasses, and
realized in the remaining parts of the phase diagram. The
1RSB (replica symmetry breaking) spin-glass phase can
exist as a truly stable phase only for m < n < 1 (see
Eqs. (4.30, 4.31)). Replica symmetry is always restored
for sufficiently low temperatures and n > 0. Notice the
differences compared to the SK model with infinite-order
RSB, where a finite n mainly modifies the existing spin-
glass phase, introducing the lower plateau for the order
parameter q(x) [29,28]. This plateau grows with n, and
RSB disappears at some critical value nc (nc < 1). Nearly
the same behavior is introduced by an external magnetic
field. In our case such a phase does not exist at all, and
the 1RSB phase with vanishing lower plateau exists even
for n > 1, but only as a metastable phase. These distinc-
tions are connected with different structures of the phase
space.

For all p ≥ 2 the first-order phase transitions are re-
lated with an interesting effect: In spite of the fact that
the jump of the mean energy u at the transition point is
negative (because the latent heat is positive) the jump of
the total entropy is positive. This uncommon property is
possible only due to our generalized thermodynamical re-
lation (3.17), combined with the fact that the correspond-
ing jumps of sσ and sJ have opposite signs: ∆sσ < 0,
∆sJ > 0, but the sum s = sJ+sσ has a positive jump (see
Fig. 5). The situation is slightly different for the first-order
type phase transition without latent heat. In Section 4.2.1
we have seen that the total entropy increases continuously
in the course of the phase transition from the paramagnet
to 1RSB spin-glass (see Fig. 2). In this respect an interest-
ing analogy exists with the process of coarse(fine)-graining
(see the discussion after Eq. (3.13)). Further developments
of these analogies will be quite interesting.
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There is a close relation between free energies and
saddle-point equations of the finite n RS case and the
q0 = 0 case of the 1RSB equations. The RS solution
with nonzero n corresponds to the 1RSB solution with
q0 = 0 [25]. This mechanism is responsible for the tran-
sition between the 1RSB and RS spin-glass phases. The
transition is second-order with respect to free energy and
its derivatives, but is connected with a jump of q0 from
zero to q1 that ensures replica-symmetric behavior (see
Figs. 3, 4). This analogy exists in dynamics also: in our
time-translation invariant two-temperature dynamics (the
invariance is valid for temperatures higher than the dy-
namical transition point) there is the phenomena similar
to the generalized FDT in the n = 0 non-equilibrium dy-
namics [14]. This effect reflects intrinsic connections be-
tween systems where the complex structure of the phase
space is self-generated and there are different time-scales
for the global relaxation (ergodicity breaking), and sys-
tems where different components have different tempera-
tures and relaxation-scales.

For n < 1 and p > 2 there is the dynamical phase
transition occurring at the higher temperature compared
to the statical transitions. This known effect is due to the
existence of the whole set of metastable states with free
energies greater than the free energy of the pure states
predicted by statics. It is connected with the absence of
activated processes on the timescales considered in the
dynamics [18,21,16], which enters due to mean-field (infi-
nite dimension) character of the model [45]. In the static
consideration we observe times → ∞ before the thermo-
dynamic limit N →∞, but if dynamics is investigated by
means of generating functional [49] the first limit is taken
after the second, which eliminates activated process that
need time-scales exponential in N . In the corresponding
finite-dimensional systems a smoothening of this effect is
expected, where instead a sharp phase transition a near-
critical domain of temperatures will take place. Notice also
that for n = 0 and p = 2 the RS spin-glass phase is only
marginally stable. A non-zero n stabilizes the correspond-
ing fluctuations.

The predictions of the adiabatic statics and dynamics
can be compared only for the relatively short observation
times. The spin-glass phase appears at times � τJ (the
characteristic time of the coupling constants), but disap-
pears for the observation times� τJ . In this limit of long
observations the coupling constants cannot be viewed as
frozen. This is the non-equilibrium steady state without
any spin-glass ordering (only a critical slowing down of
the spin-spin correlation function occurs when TJ → 0).
In this respect it is similar to weak ergodicity breaking
occurring in the non-equilibrium dynamics [14]. A gen-
eralized fluctuation-dissipation relation has been proven,
which contains the temperature of the couplings instead of
the temperature of the spins. This relation is also closely
connected to the non-equilibrium generalization of the
FDT [14,15], where, in particular, the asymptotic long-
time non-equilibrium state of the n = 0 p-spin spherical
model is considered.
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and S. Kobe for warm hospitality in Dresden.

Appendix A

In this appendix we consider how to get the usual
Langevin equations of the spin-glass model with a priori
random freezed coupling constants from (2.2, 2.3).

Equation (2.3) can be solved exactly with respect of
Ji1...ip :

Ji1...ip(t) = J
(0)
i1...ip

e−(t−t0)/τJ +Ai1...ip(t) +Bi1...ip(t)

(A.1)

Ai1...ip(t) =
1
Γ̄J

∫ t

t0

dt̄ e−(t−t̄)/τJηi1...ip(t̄), (A.2)

Bi1...ip(t) =
1
Γ̄J

∫ t

t0

dt̄ e−(t−t̄)/τJJNσi1(t̄)...σip (t̄), (A.3)

where J
(0)
i1...ip

are the initial conditions at the moment
t = t0, τJ = Γ̄JJ

2
N/v, and J2

N = p!J2/2Np−1. The initial
factors can be neglected if t0 7→ −∞, |t0| � τJ . Further
we have

〈Ai1...ip(t)Aj1...jp(t′)〉 =
TJJ

2
N

v
δi1...ip,j1...jpe−|t−t

′|/τJ .

(A.4)

Thus if τJ � t − t′, then Ai1...ip is a quenched Gaussian
noise, and if v ∼ TJ and TJ 7→ ∞ then Bi1...ip can be
neglected with respect of Ai1...ip . So in these limits Ji1...ip
is a quenched Gaussian noise. Each coupling constant is
independent of the other ones and the spins.

Appendix B

In this appendix we discuss the derivation of (2.4) from the
initial Langevin equations. We investigate these equations
by the dynamical generating functional method [49,21].

1 = Zdyn

=
∫ ∏

i

Dηi
∏

[i1...ip]

Dηi1...ip exp
(
− 1

4ΓT

×
∑
i

∫
dt η2

i (t)− 1
4Γ̄JTJ

∑
[i1...ip]

∫
dt η2

i1...ip(t)
)
,

(B.1)

where [i1 . . . ip] = 1 ≤ i1 < · · · < ip ≤ N , and normal-
ization factors are included in Dηi, Dηi1...ip . By means of
Zdyn we can compute the noise average of any quantity
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A({σ}, {J}):

〈A〉 =
∫

DσDJ
[
δη

δσ

] [
δη

δJ

]
A({σ}, {J})

× exp
[
− 1

4ΓT

∑
i

∫
dt
(
Γ∂tσi + rσi +

∂H
∂σi

)2

− 1
4Γ̄JTJ

∑
[i1...ip]

∫
dt
(
Γ̄J∂tJi1...ip +

∂H
∂Ji1...ip

)2 ]
(B.2)

where [δη/δσ], [δη/δJ ] are the corresponding functional
Jacobians. After a simple transformation we have

Zdyn =
∫

DσDJDσ̂DĴ exp

(
−ΓT

∑
i

∫
dt σ̂2

i

+i
∑
i

∫
dt σ̂i(t)

(
Γ∂tσi + rσi +

∂H
∂σi

))

× exp

( ∑
[i1...ip]

[
−Γ̄JTJ

∫
dt Ĵ2

i1...ip(t)

+i
∫

dt Ĵi1...ip(t)
(
Γ̄J∂tJi1...ip +

∂H
∂Ji1...ip

)])
× exp(Vησ + VηJ ). (B.3)

Here the last exponent is the contribution of the functional
Jacobians; we shall not write this expression explicitly be-
cause it is not relevant in the mean-field approximation.

We want to derive equations for spin dependent func-
tions, therefore in equation (B.1) we can take Gaussian
integrations by {J}, {Ĵ}. The result is

Zdyn =
∫

DσDσ̂ exp
[
− ΓT

∑
i

∫
dt σ̂i(t)

+i
∑
i

∫
dt σ̂i(t)(Γ∂t + r)σt

− iJ
2
N

ΓJ

∑
[i1...ip]

∫
dtdt′ φ(t− t′)ai1...ip(σ, σ̂, t′)bi1...ip(σ, t)

−TJJ
2
N

2v

∑
[i1...ip]

∫
dtdt′ k(t−t′)ai1...ip(σ, σ̂, t′)ai1...ip(σ, σ̂, t)

]
× exp(Vησ + VηJ ), (B.4)

where

ai1...ip(σ, σ̂, t) =
p∑
s=1

σi1(t)...σis−1(t)σ̂is (t)σis+1(t)...σip (t),

bi1...ip(σ, t) = σi1(t)...σip(t), (B.5)

φ(t− t′) = θ(t− t′)e−(t−t′)/τJ ,

k(t− t′) = e−|t−t
′|/τJ , τJ = ΓJ/v. (B.6)

By the standard mean-field procedure [21] we introduce
the following order parameters:

Q1(t, t′) = 〈iσ̂(t)iσ̂(t′)〉,
Q2(t, t′) = 〈σ(t)σ(t′)〉,
Q3(t, t′) = 〈σ(t)iσ̂(t′)〉,
Q4(t, t′) = 〈σ(t′)iσ̂(t)〉, (B.7)

and the corresponding Lagrange factors λs(t, t′), s =
1, .., 4. In this scheme Q2 is the correlation function, Q3,
Q4 are the susceptibilities; Q1 (“field-field” correlation
function) should be taken zero by reasons of causality [21].
Now we have

Zdyn =
∫ 4∏

s=1

DλsDQs
2πi

exp
(
NΩ(λs, Qs)

+N

∫
DσDσ̂ eL(σ,σ̂)

)
Ω(λs, Qs) = −

∫
dtdt′

4∑
s=1

λs(t, t′)Qs(t, t′)

+
pJ2

2ΓJ

∫
dtdt′φ(t− t′)Q3(t, t′)Qp−1

2 (t, t′)

+
pTJJ

2

4v

∫
dtdt′ φ(t−t′)[Q1(t, t′)Qp−1

2 (t, t′)

+ (p− 1)Q3(t, t′)Q4(t, t′)Qp−2
2 (t, t′)], (B.8)

where

L(σ, σ̂) = −ΓT
∑
i

∫
dtσ̂i(t)−i

∑
i

∫
dtσ̂i(t)(Γ∂t+r)σt

+ λ1(t, t′)iσ̂(t)iσ̂(t′) + λ2(t, t′)σ(t)σ(t′)

+ λ3(t, t′)iσ(t)σ̂(t′) + λ4(t, t′)iσ̂(t)σ(t′). (B.9)

By variational methods we obtain

λ1(t, t′) =
pTJJ

2

4v
k(t− t′)Qp−1

2 (t, t′)

λ2(t, t′) =
p(p− 1)J2

2ΓJ
φ(t− t′)Q3(t, t′)Qp−2

2 (t, t′)

+
pTJJ

2

4v
k(t− t′)((p− 1)Q1(t, t′)Qp−2

2 (t, t′)

+(p− 1)(p− 2)Q3(t, t′)Q4(t, t′)Qp−3
2 (t, t′))

λ3(t, t′) =
pJ2

2ΓJ
φ(t− t′)Qp−1

2 (t, t′)

+(p− 1)
pTJJ

2

4v
k(t− t′)Q4(t, t′)Qp−2

2 (t, t′)

λ4(t, t′) = (p− 1)
pTJJ

2

4v
k(t− t′)Q3(t, t′)Qp−2

2 (t, t′),

(B.10)
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λ2 can be adsorbed in the Jacobians. These results should
be substituted to (B.9): the effective dynamics of a spin
is determined by spins motion at the environment of the
spin, and by motion of the coupling constants. After this
lengthy calculation we arrive at (2.4).
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13. J. Jäckle, Philos. Mag. B 44, 533 (1981).
14. L.F. Cugliandolo, J. Kurchan Phys. Rev. Lett. 71, 173

(1993); Philos. Mag. B 71, 50 (1995).
15. L. F. Cugliandolo, J. Kurchan, L. Peliti, Phys. Rev.

E 55, 3898 (1997); L.F. Cugliandolo, J. Kurchan
cond-mat/9807226.

16. Th.M. Nieuwenhuizen, J. Phys. A. Lett. 31, L201 (1998).
17. J.-P. Bouchaud, L.F. Cugliandolo, J. Kurchan, M. Mezard,

in Spin-Glasses and Random Fields, edited by A.P. Young,
(World Scientific, 1998).

18. W. Götze, L. Sjogren, Rep. Prog. Phys. 55, 241 (1992);
W. Götze, J. Phys. Cond. Mat. 11, 1 (1999).

19. For a review and further references about phase transitions
in nonequilibrium steady states, see: B. Schmittmann,
R.K.P. Zia, in Phase Transitions and Critical Phenomena,
edited by C. Domb, J.L. Lebowitz (Academic Press, New
York, 1996).

20. M. Roger, M. Debieu, J.H. Hetherington, Rev. Mod. Phys.
55, 1 (1983).

21. T.R. Kirkpatrick, P.G. Wolynes, Phys. Rev. A 34, 1045
(1986); T.R. Kirkpatrick, D. Thirumalai, Phys. Rev. B
36, 5388 (1987); T.R. Kirkpatrick, D. Thirumalai, P.G.
Wolynes, Phys. Rev. A 40, 2047 (1989).

22. H. Horner, Z. Phys. B 57, 29 (1984); ibid 57, 39 (1984).
23. R. Landauer, J.W.F. Woo, Phys. Rev. A 6, 2205 (1972).
24. A.C.C. Coolen, R.W. Penney, D. Sherrington, J. Phys. A

26, 3681 (1993).
25. R.W. Penney, D. Sherrington, J. Phys. A 27, 4027 (1994).
26. G. Jongen, D. Bolle, A.C.C. Coolen, J. Phys. A 31, L737-

L742 (1998).
27. N. Caticha, J. Phys. A 27, 5501 (1994).
28. Vik. Dotsenko, M. Mezard, S. Franz, J. Phys. A 27, 2351

(1994).
29. I. Kondor, J. Phys. A 16, L127 (1983).
30. J.M. Kosterlitz, D.J. Thouless, R.C. Jones, Phys. Rev.

Lett. 36, 1217 (1976).
31. E. Gardner, Nucl. Phys. (B)[FS14] 257, 747 (1985).
32. A. Crisanti, H.J. Sommers, Z. Phys. B 87, 341 (1992).
33. J. Kurchan, G. Parisi, M.A. Virasoro, J. Phys. I France 3,

1819 (1993).
34. H. Sompolinsky, Phys. Rev. Lett. 47, 935 (1981); Philos.

Mag. B 50, 285 (1984).
35. A. Crisanti, H. Horner, H.J. Sommers, Z. Phys. B 92, 257

(1993).
36. A. Crisanti, H.J. Sommers, J. Phys. I France 5, 805 (1995).
37. Th.M. Nieuwenhuizen, Phys. Rev. Lett. 74, 3463 (1995).
38. Th.M. Nieuwenhuizen, Complexity as driving force for dy-

namical glassy transition; cond-mat/9504059.
39. Th.M. Nieuwenhuizen, Phys. Rev. Lett. 79, 1317 (1997).
40. Th.M. Nieuwenhuizen, Phys. Rev. Lett. 80, 5581 (1998).
41. Th.M. Nieuwenhuizen, Phys. Rev. E 61, 267 (2000).
42. A.E. Allahverdyan, D.B. Saakian, Phys. Rev. E 58, 5201

(1998).
43. A.E. Allahverdyan, Th.M. Nieuwenhuizen, cond-mat/

9907143, to be published in Phys. Rev. E (July 2000).
44. D.J. Gross, I. Kanter, H. Sompolinsky, Phys. Rev. Lett.

55, 304 (1985).
45. G. Parisi, Slow Dynamics of Glassy Systems.,

cond-mat/9705312.
46. A. Houghton, S. Jain, A.P. Young, Phys. Rev. B 28, 2630

(1983).
47. H. Horner, Z. Phys. B, 66, 175, (1987).
48. J. Kurchan, L. Laloux, J. Phys. A 29, 1929 (1996).
49. H.K. Janssen, Z. Phys. B 26, 187 (1977); C. De Dominicis,

L. Peliti, Phys. Rev. Lett. 38, 505 (1977); Phys. Rev. B
18, 353 (1978).

50. C.H. Bennett, Sci. Am. 257, 108 (1987); S. Lloyd, Phys.
Rev. A 39, 5378 (1989).

51. W. Ebeling, Physica A 182, 108 (1992).
52. P. Shukla, S. Singh, J. Phys. C 14, L81 (1981); S. Ciuchi,

F. de Pasquale, Nucl. Phys. B 300 [FS 22], 31 (1988);
Th.M. Nieuwenhuizen, Phys. Rev. B 31, 7487 (1985); L.F.
Cugliandolo, D.S. Dean, J. Phys. A 28, 4213 (1995).


